On the Upper Critical Dimensions of Random Spin Systems

Hal Tasaki^{1,2}

A set of critical exponent inequalities is proved for a large class of classical random spin systems. The inequalities imply rigorous (and probably the optimal) lower bounds for the upper critical dimensions, i.e., $d_u \ge 4$ for regular and random ferromagnets, $d_u \ge 6$ for spin glasses and random field systems.

KEY WORDS: Random spin systems; critical exponent inequalities; upper critical dimensions.

1. INTRODUCTION

In spite of considerable interest, many aspects of the random spin systems remain to be understood both physically and mathematically. In this paper I extend a simple argument used in the percolation problem⁽¹⁾ to a large class of random spin systems, and derive rather strong information about the possible critical phenomena. More precisely, I prove simple correlation inequalities and critical exponent inequalities (for some finite-size scaling critical exponents) for a general random spin system with short-range interactions and N-component classical spin variables. In sufficiently low dimensions these inequalities will turn out to be *inconsistent with the mean* field (or canonical) scaling behavior. Therefore, they imply that the perfect mean-field-type critical phenomena cannot take place in these dimensions. It is believed that in dimensions larger than the upper critical dimension d_u , the critical phenomena are described by mean field theory. Thus, the present inequalities imply lower bounds for the upper critical dimensions of the random spin systems. The resulting bounds ($d_u \ge 4$ for regular and

¹ Physics Department, Princeton University, Princeton, New Jersey 08544.

² Present address: Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171, Japan.

random ferromagnets, $d_u \ge 6$ for spin glasses and random field systems) turn out to be optimal when compared with the general belief.

The method may be regarded as a standard dimensional analysis which starts, however, from rigorous correlation inequalities. Therefore, it is crucial to determine what we mean by the mean field (or canonical) scaling behavior of a given random spin system. In principle, the mean field scaling behavior may always be determined by investigating the corresponding Gaussian model,³ so there seems to be no controversy.⁴

Being quite elementary and simple, the present method may be applied to many random (and nonrandom) statistical systems.⁵ One of the interesting problems is to obtain optimal critical exponent inequalities for the Anderson localization problem and determine its upper critical dimension.

2. BASIC INEQUALITY

We consider a general N-component classical spin system whose thermal expectation in a finite lattice $\Lambda \subset Z^d$ is given by

$$\langle \cdots \rangle = Z_A^{-1} \int \prod_x dv(\mathbf{S}_x)(\cdots) e^{-\beta H}$$
 (1)

Each spin variable S_x takes its values in \mathbb{R}^N . The single-site measure $dv(\cdot)$ is an arbitrary, bounded measure. The most standard choice $dv(S) = \delta(|S| - 1) d^N S$ describes the Ising, XY, and Heisenberg models for N = 1, 2, and 3, respectively. The Hamiltonian H is

$$H = -\sum_{\langle x, y \rangle} J_{xy} \mathbf{S}_x \cdot \mathbf{S}_y - \sum_x \mathbf{H}_x \cdot \mathbf{S}_x$$
(2)

where $\langle x, y \rangle$ denotes the nearest neighbor pair. The exchange interactions $\{J_{xy}\}$ and the external (vector) fields $\{\mathbf{H}_x\}$ take arbitrary real values. We denote an infinite-volume limit $\Lambda \to Z^d$ of $\langle \cdots \rangle_{\Lambda}$ by $\langle \cdots \rangle$.

For a fixed site x, let $\Lambda(L, x)$ be a finite sublattice of Z^d which consists of the sites y with |y-x| < L. By $\langle \cdots \rangle_{\Lambda(L,x), b.c.}$ we denote the thermal

³ In general, the Gaussian model is obtained by replacing the single-site measure dv(S) by const $\exp(-S^2/2c) d^N S$. The Gaussian model for the (regular and random) ferromagnets and the random field systems may be easily treated, and we get the expected (finite-size) scaling behavior at the critical point. The analysis of the Gaussian model for the spin glasses may not be straightforward, but I believe that the expected scaling behavior is true.

 $^{^4}$ For the spin glasses this is true only when we consider the model with vanishing external field.⁽²⁾

⁵ For other rigorous critical exponent inequalities for the random spin systems, see ref. 3.

⁶ Throughout the present paper |x| means max $\{|x_1|,...,|x_d|\} = ||x||_{\infty}$.

Random Spin Systems

expectation in the lattice $\Lambda(L, x)$, where each spin S_y in the boundary $\partial \Lambda(L, x)$ (i.e., a set of sites y satisfying |y - x| = L) is fixed by specific boundary conditions "b.c."

Let x be an arbitrary site with |x| = 2L. We consider arbitrary functions $F({\mathbf{S}_y}_{y \in \mathcal{A}(L,0)})$ and $G({\mathbf{S}_z}_{z \in \mathcal{A}(L,x)})$, which depend only on the spin variables in $\mathcal{A}(L, 0)$ and $\mathcal{A}(L, x)$, respectively. (0 denotes the origin of Z^d .) Then the following inequality is a simple consequence of the Markov property:

$$|\langle F(\{\mathbf{S}_{y}\}) G(\{\mathbf{S}_{z}\})\rangle| \leq \max_{\mathbf{b},\mathbf{c}} |\langle F(\{\mathbf{S}_{y}\})\rangle_{A(L,0),\mathbf{b},\mathbf{c}}| \max_{\mathbf{b},\mathbf{c}} |\langle G(\{\mathbf{S}_{z}\})\rangle_{A(L,x),\mathbf{b},\mathbf{c}}|$$
(3)

In each term in the right-hand side, we take the maximum over all the possible boundary conditions.

In most of our applications we set $F = S_0^{(1)}$ and $G = S_x^{(1)}$, i.e., the first component of the spin variables at sites 0 and x. Then inequality (3) simply becomes

$$|\langle S_0^{(1)} S_x^{(1)} \rangle| \leqslant M_0(L,\beta) M_x(L,\beta) \tag{4}$$

where |x| = 2L and the *finite-size order parameter* $M_x(L, \beta)$ is defined by

$$M_{x}(L,\beta) = \max_{\mathbf{b},\mathbf{c}} \left| \langle S_{x}^{(1)} \rangle_{\mathcal{A}(L,x),\mathbf{b},\mathbf{c},\mathbf{l}} \right|$$
(5)

Proof of Inequality (3). We prove the inequality for a sufficiently large finite lattice Λ , and then the case for the infinite lattice follows automatically. We decompose Λ into a disjoint union as $\Lambda_1 \cup \Lambda_2 \cup \Lambda_3$, where $\Lambda_1 = \Lambda(L, 0)$ and $\Lambda_2 = \Lambda(L, x)$. We also write $H = H_1 + H_2 + H_3$ where H_i for i = 1, 2 (not 3) are defined by restricting the first sum in (2) to the pairs $\langle x, y \rangle$, where $x \in \Lambda_i$ or $y \in \Lambda_i$, and the second sum to the sites x in Λ_i . From the definition we have

$$Z_{A} |\langle FG \rangle_{A}| \leq \int \prod_{y \in A_{3}} dv(\mathbf{S}_{y}) e^{-\beta H_{3}} \left| \int \prod_{y \in A_{1}} dv(\mathbf{S}_{y}) Fe^{-\beta H_{1}} \right|$$
$$\times \left| \int \prod_{y \in A_{2}} dv(\mathbf{S}_{y}) Ge^{-\beta H_{2}} \right|$$

Note that for an arbitrary $\{S_z\}$ for $z \in \Lambda_3$, we have

$$\frac{\left|\int \prod dv(\mathbf{S}_{y}) F e^{-\beta H_{1}}\right|}{\int \prod dv(\mathbf{S}_{y}) e^{-\beta H_{1}}} \leq \max_{\mathbf{b.c.}} \left|\langle F \rangle_{A(L,0),\mathbf{b.c.}}\right|$$

because the left-hand side is nothing but the expectation value $|\langle F \rangle_{A(L,0),b.c.}|$, where the boundary conditions b.c. are determined by the values of S_z for $z \in A_3$. Substituting this bound (and the corresponding bound for A_2) into the first inequality, we get

$$Z_{A} |\langle FG \rangle_{A}| \leq \max |\langle F \rangle| \max |\langle G \rangle| \int \prod_{y \in A_{3}} dv(\mathbf{S}_{y}) e^{-\beta H_{3}}$$
$$\times \left(\int \prod_{y \in A_{1}} dv(\mathbf{S}_{y}) e^{-\beta H_{1}} \int \prod_{y \in A_{2}} dv(\mathbf{S}_{y}) e^{-\beta H_{2}} \right)$$
$$= \max |\langle F \rangle| \max |\langle G \rangle| Z_{A}$$

which is nothing but the desired inequality.

3. APPLICATIONS

In this section I discuss some of the applications of the inequalities (3) and (4) for specific systems.

3.1. Regular Ferromagnets (with Vanishing Magnetic Field)

The model is obtained by setting $J_{xy} = J > 0$ for all $\langle x, y \rangle$ and $\mathbf{H}_x = \mathbf{0}$ for all x. In sufficiently large dimensions such a model undergoes the usual ferromagnetic phase transition. Here, inequality (4) becomes

$$\langle S_0^{(1)}S_x^{(1)}\rangle \leq m(L,\beta)^2, \qquad |x|=2L$$

where $m(L, \beta) = M_0(L, \beta) = M_x(L, \beta)$ is the finite-size ferromagnetic order parameter (or magnetization). At the ferromagnetic critical point $\beta = \beta_c$, the above quantities are expected to show the power law behavior $\langle S_0^{(1)}S_x^{(1)} \rangle \approx L^{-(d-2+\eta)}$ and $m(L, \beta_c) \approx L^{-\beta/\bar{\nu}}$. (Note that this relation only defines the ratio $\tilde{\beta}/\tilde{\nu}$. This notation is motivated by the finite-size scaling theory,⁽⁴⁾ which predicts $\tilde{\beta}/\tilde{\nu} = \beta/\nu$, where β and ν are the standard critical exponents. In what follows we use similar notations to distinguish the finite-size critical exponents.) Assuming the existence of critical exponents (one can weaken this assumption as in ref. 1), we immediately get a critical exponent inequality

$$d-2+\eta \ge 2\tilde{\beta}/\tilde{\nu}$$

This inequality should be classified as a "hyperscaling inequality," since it saturates under the so-called hyperscaling hypothesis. Usually a hyperscaling inequality provides us with information about the upper critical dimension as follows.⁽¹⁾ If we substitute the mean field values (see footnote 3) $\eta = 0$ and $\tilde{\beta}/\tilde{\nu} = 1$ (since $\beta = 1/2$ and $\nu = 1/2$) into the inequality

Random Spin Systems

 $d-2+\eta \ge 2\tilde{\beta}/\tilde{\nu}$, we get the bound $d\ge 4$. This implies that complete mean-field-type critical phenomena are impossible in dimensions less than four. In terms of the upper critical dimension d_u , this implies a rigorous lower bound $d_u \ge 4$ for an arbitrary N-component ferromagnet. The bound is consistent with the general belief $d_u = 4$ (see, e.g., ref. 5).

The first critical exponent inequality which implies the bound $d_u \ge 4$ was proved by Fisher⁽⁶⁾ for a class of single-component ferromagnets. The inequality $d-2+\eta \ge 2\beta/\nu'$ (with the exponents β and ν' defined in the standard ways) was first proved for a class of single-component ferromagnets⁽⁷⁾ by a completely different method. (See also ref. 1.)

3.2. Random Ferromagnets

The model is obtained by setting $\mathbf{H}_x = \mathbf{0}$ and regarding each J_{xy} as an independent random variable described by an identical probability distribution $d\rho(J)$. Here we consider the case when J_{xy} is mostly positive, and thus a ferromagnetic phase transition takes place.⁽⁸⁾ The inequality (4) may be averaged over the J distribution and yields

$$\overline{\langle S_0^{(1)} S_x^{(1)} \rangle} \leqslant \overline{|\langle S_0^{(1)} S_x^{(1)} \rangle|} \leqslant m(L, \beta)^2, \qquad |x| = 2L$$

where $m(L, \beta) = \overline{M_0(L, \beta)} = \overline{M_x(L, \beta)}$ is the finite-size magnetization. This bound at $\beta = \beta_c$ again leads us to a hyperscaling inequality

$$d-2+\eta \ge 2\widetilde{\beta}/\widetilde{v}$$

where the exponents are defined as in Section 3.1. (It is not difficult to extend the argument in ref. 1 to prove $d - 2 + \eta \ge 2\beta/\nu'$, where β and ν' are defined in the standard way.) Again this implies the lower bound $d_u \ge 4$ because the mean field theory for the random ferromagnets is exactly the same as that for the regular ferromagnets (see footnote 3). The result is consistent with the Harris criterion,⁽⁹⁾ which indicates that the critical phenomena in the random ferromagnets differ from those in the regular ferromagnets only when $\alpha > 0$.

Note that the basic inequality (4) is valid for unaveraged correlation functions as well. However, the averaging procedure seems to be necessary to get a meaningful consequence, since the quantity $M_x(L,\beta)$ crucially depends on the sample.

3.3. Spin Glasses

The model is formally the same as Section 3.2, but now the probability distribution $d\rho(J)$ is assumed to be invariant under the transformation

 $J \rightarrow -J$. {Typically we set $d\rho(J) = \left[\frac{1}{2}\delta(J - J_0) + \frac{1}{2}\delta(J + J_0)\right] dJ$ or $d\rho(J) = \text{const} \cdot \exp(-J^2/2J_0^2) dJ$.} In sufficiently large dimensions such a model is expected to undergo the so-called spin glass transition (e.g., ref. 10). In the spin glass transition, the relevant order parameter is the Edwards-Anderson order parameter $q = \overline{\langle S_0^{(1)} \rangle^2}$, whose finite-size counterpart should be defined as

$$q(L, \beta) = \overline{\max_{b.c.} (|\langle S_0^{(1)} \rangle_{A(L,0),b.c.}|)^2} = \overline{M_0(L, \beta)^2} = \overline{M_x(L, \beta)^2}$$

Now by squaring both sides of the inequality (4) and taking the J average, we get

$$\overline{\langle S_0^{(1)} S_x^{(1)} \rangle^2} \leqslant q(L, \beta)^2. \qquad |x| = 2L$$

At the spin glass critical point β_{SG} these quantities are expected to behave as

$$\overline{\langle S_0^{(1)} S_x^{(1)} \rangle^2} \approx L^{-(d-2+\eta_{\mathrm{EA}})}, \qquad q(L, \beta_{\mathrm{SG}}) \approx L^{-\tilde{\beta}_{\mathrm{EA}}/\tilde{\nu}}$$

Thus we get a hyperscaling inequality

$$d-2+\eta_{\rm EA} \ge 2\widetilde{\beta}_{\rm EA}/\widetilde{v}$$

which yields a lower bound $d_u \ge 6$ when we substitute the mean field values (see footnotes 3 and 4)^(2,11) $\eta_{EA} = 0$ and $\tilde{\beta}_{EA}/\tilde{v} = 2$ (since $\beta_{EA} = 1$ and v = 1/2). This bound is consistent with the general belief $d_u = 6$ for the upper critical dimension of the spin glasses.

3.4. Random Field Systems

Here we set $J_{xy} = J > 0$ as in Section 3.1, but regard each \mathbf{H}_x as an independent random variable described by an identical probability distribution $d\rho(\mathbf{H})$. We assume that $d\rho(\mathbf{H})$ is invariant under the transformation $\mathbf{H} \to -\mathbf{H}$. {Typically we set $d\rho(\mathbf{H}) = [\frac{1}{2}\delta(\mathbf{H} - \mathbf{H}_0) + \frac{1}{2}\delta(\mathbf{H} + \mathbf{H}_0)] d^N \mathbf{H}$ or $d\rho(\mathbf{H}) = \text{const} \cdot \exp(-\mathbf{H}^2/2H_0) d^N \mathbf{H}$.} In sufficiently large dimensions, this model undergoes a ferromagnetic transition⁽¹²⁾ (when $\overline{\mathbf{H}}^2$ is not too large). Because the present Hamiltonian is typically not invariant under $\mathbf{S}_x \to -\mathbf{S}_x$, the quantity $M_x(L, \beta)$ defined as in (5) does not vanish in the $L \to \infty$ limit at any temperature. However, an appropriate finite-size order parameter is obtained by also executing a spatial average as follows:

$$m(L, \beta) = \overline{\max_{\mathbf{b}.\mathbf{c}.}} \left| \left\langle L^{-d} \sum_{y; |y| \leq L/2} S_{y}^{(1)} \right\rangle_{\mathcal{A}(L,0), \mathbf{b}.\mathbf{c}.} \right|$$

Random Spin Systems

We use our basic inequality (3) by setting $F = L^{-d} \sum_{y; |y| \le L/2} S_y^{(1)}$ and $G = L^{-d} \sum_{z; |z-x| \le L/2} S_z^{(1)}$. After taking the *H* average, we get

$$L^{-2d} \sum_{\substack{y,z; \ |y| \le L/2 \\ |z-x| \le L/2}} \overline{\langle S_y^{(1)} S_z^{(1)} \rangle} \le m(L,\beta)^2, \qquad |x| = 2L$$

At the critical point $\beta = \beta_c$, the two-point function is expected⁷ to decay as $\overline{\langle S_{y}^{(1)}S_{z}^{(1)}\rangle} \approx |y-z|^{-(d-4+\bar{\eta})}$. Thus, the left-hand side should decay as $L^{-(d-4+\bar{\eta})}$. We also expect $m(L, \beta_c) \approx L^{-\min(\bar{\beta}/\bar{v}, d/2)}$, so we get a hyperscaling inequality

$$d-4+\bar{\eta} \ge 2\min(\tilde{\beta}/\tilde{v}, d/2)$$

The mean-field values (see footnote 3) $\bar{\eta} = 0$ and $\tilde{\beta}/\tilde{v} = 1$ (since $\beta = 1/2$ and v = 1/2) yield a lower bound $d_u \ge 6$ which is consistent with the result of the dimensional reduction⁽¹³⁾ $d_u = 6$. Although the dimensional reduction predicts the wrong lower critical dimension (at least for the Ising model), it is believed that it predicts the correct upper critical dimension.

ACKNOWLEDGMENTS

It is a pleasure to thank Elliott Lieb for encouragement and a careful reading of the manuscript, and Jean Bricmont, Avraham Soffer, Tom Kennedy, Daniel Fisher, and Benoit Doucot for various discussions. This work has been supported by NSF grant PHY 85-15288-A02.

REFERENCES

- 1. H. Tasaki, Commun. Math. Phys. 113:49 (1987).
- 2. D. S. Fisher, Phys. Rev. Lett. 54:1063 (1985).
- H. Nishimori, Prog. Theor. Phys. 66:1169 (1981); M. Schwartz and A. Soffer, Phys. Rev. Lett. 55:2499 (1985); J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev. Lett. 57:2999 (1987).
- 4. M. E. Fisher, in Critical Phenomena, M. S. Green, ed. (Academic Press, New York, 1972).
- 5. K. G. Wilson and J. Kogut, Phys. Rep. 12C:75 (1974).
- 6. M. E. Fisher, Phys. Rev. 180:594 (1969).
- 7. L. L. Liu, R. I. Joseph, and H. E. Stanley, Phys. Rev. B 6:1963 (1972).
- J. T. Chayes, L. Chayes, and J. Fröhlich, Commun. Math. Phys. 100:399 (1985); M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, J. Phys. A 20:L313 (1987).
- 9. A. B. Harris, J. Phys. C 7:1671 (1974).
- K. Binder and A. P. Young, *Rev. Mod. Phys.* 58:801 (1986); D. S. Fisher and D. A. Huse, Equilibrium behavior of the spin-glass ordered phase, preprint.
- ⁷ Note that the truncated two-point function at $\beta = \beta_c$ is believed to behave as $\overline{\langle S_0^{(1)} S_x^{(1)} \rangle \langle S_0^{(1)} S_x^{(1)} \rangle} \approx L^{-(d-2+\eta)}$, where the identity $\overline{\eta} = 2\eta$ is conjectured.⁽¹³⁾

- S. F. Edwards and P. W. Anderson, J. Phys. F 5:965 (1975); D. Sherington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792 (1975); G. Parisi, Phys. Rev. Lett. 43:1754 (1979); J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Commun. Math. Phys. 106:41 (1986).
- Y. Imry and S. K. Ma, *Phys. Rev. Lett.* **35**:1399 (1975); D. S. Fisher, J. Fröhlich, and T. Spencer, *J. Stat. Phys.* **34**:863 (1984); J. Imbrie, *Commun. Math. Phys.* **98**:145 (1985); J. Bricmont and A. Kupiainen, *Phys. Rev. Lett.* **59**:1829 (1987); *Commun. Math. Phys.*, to appear.
- G. Grinstein, *Phys. Rev. Lett.* **37**:944 (1976); A. Aharony, Y. Imry, and S. K. Ma, *Phys. Rev. Lett.* **37**:1364 (1976); G. Parisi and N. Sourlas, *Phys. Rev. Lett.* **43**:744 (1979); M. Schwartz and A. Soffer, *Phys. Rev. B* **33**:2059 (1986).