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On the Upper Critical Dimensions of 
Random Spin Systems 

Hal Tasaki  1'2 

A set of critical exponent inequalities is proved for a large class of classical 
random spin systems. The inequalities imply rigorous (and probably the 
optimal) lower bounds for the upper critical dimensions, i.e., d,~> 4 for regular 
and random ferromagnets, du ~> 6 for spin glasses and random field systems. 
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1. I N T R O D U C T I O N  

In spite of considerable interest, many aspects of the random spin systems 
remain to be understood both physically and mathematically. In this paper 
I extend a simple argument used in the percolation problem (1) to a large 
class of random spin systems, and derive rather strong information about 
the possible critical phenomena. More precisely, I prove simple correlation 
inequalities and critical exponent inequalities (for some finite-size scaling 
critical exponents) for a general random spin system with short-range 
interactions and N-component classical spin variables. In sufficiently low 
dimensions these inequalities will turn out to be inconsistent with the mean 
field (or canonical) scaling behavior. Therefore, they imply that the perfect 
mean-field-type critical phenomena cannot take place in these dimensions. 
It is believed that in dimensions larger than the upper critical dimension 
du, the critical phenomena are described by mean field theory. Thus, the 
present inequalities imply lower bounds for the upper critical dimensions of 
the random spin systems. The resulting bounds (d,,~>4 for regular and 
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random ferromagnets, du~>6 for spin glasses and random field systems) 
turn out to be optimal when compared with the general belief. 

The method may be regarded as a standard dimensional analysis 
which starts, however, from rigorous correlation inequalities. Therefore, it 
is crucial to determine what we mean by the mean field (or canonical) 
scaling behavior of a given random spin system. In principle, the mean field 
scaling behavior may always be determined by investigating the 
corresponding Gaussian model, 3 so there seems to be no controversy. 4 

Being quite elementary and simple, the present method may be applied 
to many random (and nonrandom) statistical systems, s One of the  
interesting problems is to obtain optimal critical exponent inequalities for 
the Anderson localization problem and determine its upper critical 
dimension. 

2. BASIC INEQUALITY 

We consider a general N-component classical spin system whose 
thermal expectation in a finite lattice A c Z a is given by 

< . . .}  : Z ] '  f I ]  dv(Sx)(.--) e -rH (1) 
x 

Each spin variable Sx takes its values in R N. The single-site measure dv(.) 
is an arbitrary, bounded measure. The most standard choice dv(S)= 
( ~ ( [ S ] -  1 ) d N S  describes the Ising, XY, and Heisenberg models for N =  1, 2, 
and 3, respectively. The Hamiltonian H is 

H = -  Z J-~ySx'Sy-~,Hx'S-~ (2) 
<x,v> x 

where (x, y )  denotes the nearest neighbor pair. The exchange interactions 
{Jxy} and the external (vector) fields {Hx} take arbitrary real values. We 
denote an infinite-volume limit A ~ Z d of ( ' . . ) A  by ( " - ) .  

For a fixed site x, let A(L, x) be a finite sublattice of Z d which consists 
of the sites y with 6 [y-xl  <L. By (''')A(L,x~.b.c. we denote the thermal 

3 In general, the Gaussian model is obtained by replacing the single-site measure dr(S) by 
const .exp(-SZ/2c)t iNs.  The Gaussian model for the (regular and random) ferromagnets 
and the random field systems may be easily treated, and we get the expected (finite-size) 
scaling behavior at the critical point. The analysis of the Gaussian model for the spin glasses 
may not be straightforward, but I believe that the expected scaling behavior is true. 

4 For the spin glasses this is true only when we consider the model with vanishing external 
field. (21 

5 For other rigorous critical exponent inequalities for the random spin systems, see ref. 3. 
6 Throughout the present paper [xl means max{lxll ..... IXdl } = I]x[]:o. 
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expectation in the lattice A(L, x), where each spin Sy in the boundary 
OA(L,x) (i.e., a set of sites y satisfying l y - x ]  = L )  is fixed by specific 
boundary conditions "b.c." 

Let x be an arbitrary site with [xl =2L.  We consider arbitrary 
functions F({Sy}yeA(L,O)) and G({Sz}zeA(L,x)), which depend only on the 
spin variables in A(L, 0) and A(L, x), respectively. (0 denotes the origin of 
Zd.) Then the following inequality is a simple consequence of the Markov 
property: 

I 

~ m a x  I ( F( {Sy} ) ) A(L,O),b.c. [ m a x  l ( G( {S~} ) ) A(L,x),b.c.[ 
b.c. b.c. 

(3) 

In each term in the right-hand side, we take the maximum over all the 
possible boundary conditions. 

In most of our applications we set F =  S(0 l) and G = S~ ~), i.e., the first 
component of the spin variables at sites 0 and x. Then inequality (3) simply 
becomes 

I (S(oItS(~))I ~ Mo(L, fl)Mx(L, fl) (4) 

where Ixl = 2L and the finite-size order parameter Mx(L, fi) is defined by 

Mx(L, fi)= max [( S(I)) A(L,x),b.c. [ (5) 
b.c. 

Proof ot' Inequality (3). We prove the inequality for a sufficiently 
large finite lattice A, and then the case for the infinite lattice follows 
automatically. We decompose A into a disjoint union as A1 w A2wA3, 
where AI=A(L,O ) and A2=A(L,x).  We also write H = H I + H 2 + H  3 
where Hi for i = 1, 2 (not 3) are defined by restricting the first sum in (2) to 
the pairs (x, y ) ,  where x e A i  or y e A ,  and the second sum to the sites x 
in A i. From the definition we have 

ZAI<FG>Ai~f U dv(Sy) e-fill3 f H dl~(Sy )'-fill1 
y'~A3 y'~AI 

x f IF[ dv(Sv) Ge ~n2 
y~A2 

Note that for an arbitrary {Sz} for z~A3, w e  have 

tl H dr(S,) re 
~<max f ( F> A(L,O),b.c.I H dv(S ) e-B", U.c. 
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because the left-hand side is nothing but the expectation value 
I(F)A(L,0),b.c.], where the boundary conditions b.c. are determined by the 
values of S~ for z e A 3. Substituting this bound (and the corresponding 
bound for A2) into the first inequality, we get 

ZA I(FG)AI ~<maxl(F) l  m a x l ( G ) l  f l-[ dv(Sy) e-~H3 
yeA3 

x ( f  1-I dv(Sy)e-~mf 1-[ dv(Sy) e-~n~) 
y~A1 y~A2 

= m a x [ ( F ) [  max [ (G) j  ZA 

which is nothing but the desired inequality. | 

3. APPLICATIONS 

In this section I discuss some of the applications of the inequalities (3) 
and (4) for specific systems. 

3.1. Regular Ferromagnets (with Vanishing Magnetic Field) 

The model is obtained by setting Jxy = J > 0 for all (x, y ) and H x = 0 
for all x. In sufficiently large dimensions such a model undergoes the usual 
ferromagnetic phase transition. Here, inequality (4) becomes 

(~(1)~(l))<~m(L, fl) 2, ixl = 2 L  
~ 0  ~ x  

where re(L, fi) = Mo(L, fl) = Mx(L, ~) is the finite-size ferromagnetic order 
parameter (or magnetization). At the ferromagnetic critical point /~ =/~c, 
the above quantities are expected to show the power law behavior 
(9(t)9(x)) ~ L- (d-2  +,j and re(L, tic)~ L-~/~. (Note that this relation only ~ 0  ~ x  

defines the ratio /7/,7. This notation is motivated by the finite-size scaling 
theory, (4) which predicts ]~/~= ~/v, where/~ and v are the standard critical 
exponents. In what follows we use similar notations to distinguish the 
finite-size critical exponents.) Assuming the existence of critical exponents 
(one can weaken this assumption as in ref. 1), we immediately get a critical 
exponent inequality 

d -  2 + r/>~ 2]~/,7 

This inequality should be classified as a "hyperscaling inequality," since it 
saturates under the so-called hypersealing hypothesis. Usually a hyper- 
scaling inequality provides us with information about the upper critical 
dimension as follows. (~) If we substitute the mean field values (see 
footnote 3) t /= 0 and ~/g = 1 (since/~ = 1/2 and v = 1/2) into the inequality 
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d-2+r />~2~/~ ,  we get the bound d>~4. This implies that complete 
mean-field-type critical phenomena are impossible in dimensions less than 
four. In terms of the upper critical dimension du, this implies a rigorous 
lower bound du/> 4 for an arbitrary N-component ferromagnet. The bound 
is consistent with the general belief du = 4 (see, e.g., ref. 5). 

The first critical exponent inequality which implies the bound du >/4 
was proved by Fisher ~6) for a class of single-component ferromagnets. The 
inequality d - 2  + r/>2fl/v' (with the exponents fl and v' defined in the 
standard ways) was first proved for a class of Single-component 
ferromagnets (7) by a completely different method. (See also ref. 1.) 

3.2. Random Ferromagnets 

The model is obtained by setting Hx = 0 and regarding each Jxy a s  

an independent random variable described by an identical probability 
distribution dp(J). Here we consider the case when Jxy is mostly positive, 
and thus a ferromagnetic phase transition takes place. (8) The inequality (4) 
may be averaged over the J distribution and yields 

S ( 1 ) S ( 1 ) \  ~ [ /~ , (1)~ , (1) \1  <~m(L,/~)2 IX] = 2 L  0 x / N ~'0 ~ x  / 

where re(L, fl)= Mo(L, fl)= Mx(L, fl) is the finite-size magnetization. This 
bound at fl =/~, again leads us to a hyperscaling inequality 

d -  2 + r/~> 2~/F 

where the exponents are defined as in Section 3.1. (It is not difficult to 
extend the argument in ref. 1 to prove d -  2 + q >>. 2fl/v', where fl and v' are 
defined in the standard way.) Again this implies the lower bound d~ ~> 4 
because the mean field theory for the random ferromagnets is exactly the 
same as that for the regular ferromagnets (see footnote 3). The result is 
consistent with the Harris criterion, ~ which indicates that the critical 
phenomena in the random ferromagnets differ from those in the regular 
ferromagnets only when ~ > 0. 

Note that the basic inequality (4) is valid for unaveraged correlation 
functions as well. However, the averaging procedure seems to be necessary 
to get a meaningful consequence, since the quantity Mx(L, fl) crucially 
depends on the sample. 

3.3. Spin Glasses 

The model is formally the same as Section 3.2, but now the probability 
distribution dp(J) is assumed to be invariant under the transformation 
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J --+ - J .  { Typically we set do(J) = [ � 8 9  Jo) + �89 + Jo) ] dJ or dp(J) = 
const . e x p ( - j 2 / 2 j  2) dJ.} In sufficiently large dimensions such a model is 
expected to undergo the so-called spin glass transition (e.g., ref. 10). In the 
spin glass transition, the relevant order parameter is the Edwards- 
Anderson order parameter q = (S(ol)> 2, whose finite-size counterpart should 
be defined as 

q(L, fl) = max (I (S~ol~)a{L,O),b.c.] )2 = Mo(L  ' fi)2 = M~(L, fi)2 
b.c. 

Now by squaring both sides of the inequality (4) and taking the J average, 
we get 

( S ( 1 ) S ( I } )  2 o x <~q(L, fi)2. Ixl = 2L 

At the spin glass critical point rise these quantities are expected to behave 
as 

( S ( I ) S ( I )  "x,2 ~ L - ( d -  2 + ~/EA) o x / ~ , q(L,/~sG) "~ L--aEA/~ 

Thus we get a hyperscaling inequality 

d -  2 + r/EA/> 21~EA/~7 

which yields a lower bound d~ >~ 6 when we substitute the mean field values 
(see footnotes 3 and4)  ~2'11) r/EA=0 and ~EA/~=2 (since flEA=I and 
v = 1/2). This bound is consistent with the general belief d~ = 6 for the 
upper critical dimension of the spin glasses. 

3.4. R a n d o m  Field Systems 

Here we set J x y = J > O  as in Section 3.1, but regard each Hx as 
an independent random variable described by an identical probability 
distribution dp(H). We assume that dp(H) is invariant under the 
transformation H + - H .  {Typically we set d p ( H ) = [ � 8 9  
�89 + Ho) ] dNH or dp(H) = const-exp(-H2/2Ho) dUll.} In  sufficiently 
large dimensions, this model undergoes a ferromagnetic transition ~12) 
(when ~2  is not too large). Because the present Hamiltonian is typically 
not invariant under Sx--+ -Sx ,  the quantity Mx(L,  fi) defined as in (5) 
does not vanish in the L ~  oo limit at any temperature. However, an 
appropriate finite-size order parameter is obtained by also executing a 
spatial average as follows: 

<1,\ I 
m(L, /~)=max ( L  -a  E " /A<L,o,,uol 

b.c, Y; lyl ~< L/2 
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We use our basic inequality (3) by setting F =  L J ~ y ; l y l ~ L / 2  S (I) and G = 
L - d  Y,=; J= el ~L/2 S~ 1). After taking the H average, we get 

L -2d ~ (SyS~(1) (1~)<~ m(L, f l )2  [X I : 2L 
Y, 2; lY] <~L/2 
Iz -- x[ ~ L/2 

At the critical point fl = tic, the two-point function is expected 7 to decay as 
( S ~ l ~ S ~ ) ) ~ l Y - z l  -(d-4+~) Thus, the left-hand side should decay as 
L - ( d - 4 + ~ ) .  We also expect m(L, f l c )~L -min(~/~'d/21, so we get a hyper- 
scaling inequality 

d -  4 + O/> 2 min(fl/9, d/2) 

The mean-field values (see footnote 3) O = 0 and fl/9 = 1 (since fl = l/2 and 
v = 1/2) yield a lower bound d, ~> 6 which is consistent with the result of the 
dimensional reduction (~3) d~=6.  Although the dimensional reduction 
predicts the wrong lower critical dimension (at least for the Ising model), it 
is believed that it predicts the correct upper critical dimension. 
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